Discussion
Our cost-effectiveness model output suggests that targeted screening of high risk individuals and consequent secondary prevention of cardiovascular events by anti-platelet medication is cost effective and results in significant health gain by reducing cardiovascular events in PAD patients.
The analysis has been performed from societal perspective and all direct and indirect costs are incorporated for all the health states in the model. Our analysis interprets that PAD screening and anti-platelet preventive treatment is a highly cost-effective intervention. Changing the analysis perspective to health care payer's, would further strengthen this interpretation. This is the case in countries like the United Kingdom where health care is financed by general taxation, a health care provider's (National Health Services) perspective is used in pharmaco-economic analyses and only direct costs are covered.
A recent meta-analysis concluded that measurement of the ankle brachial index may improve the accuracy of cardiovascular risk prediction beyond the Framingham Risk Score. After adjustment for the Framingham risk score, the ABI provided significant improvement in predicting cardiovascular risk independent of established risk factors in a broad population. There is unequivocal evidence establishing the importance of targeted ABI screening.
In our model costs and effects were modeled for aspirin and clopidogrel. The CAPRIE trial data show that clopidogrel is more effective than aspirin in reducing cardiovascular events in the subgroup of patients with PAD. However, with branded clopidogrel (Plavix), cost was a major barrier for longer-term use. Plavix (clopidogrel) lost its patent protection from May 2012 and the generic form of clopidogrel is available at a much lower cost. Since branded Plavix may have been cost-prohibitive in certain non-reimbursement settings, there will likely be an increase in compliance with long-term generic clopidogrel therapy. Economic model results for the use of clopidogrel in PAD patients were in line with previous studies establishing the cost-effectiveness of this drug. These results were expected as generic clopidogrel costs only few Euros more than aspirin and provides higher risk reduction from C The limitation of our model is that the costs and health outcomes of only antiplatelet treatment are modeled. Depending upon the identified risk factors in the individual patients many additional medication interventions such as statins and tension lowering medications are prescribed for the medical management of PAD. However, our study focusses on antiplatelet treatment using Aspirin or Clopidogrel as this is the most commonly prescribed medication in almost all the patients. In order to model the additional therapies for each subgroup of high risk patients a much more complex model is needed.
ABI has been in wide use at specialized vascular clinics but its application in primary practice is limited. With a high degree of diagnostic accuracy and as much prognostic information, ABI screening is a cost-effective but underused primary care tool to detect PAD. Mohler et al. found that the time to perform ABI, staff constrains and lack of reimbursement are the most important barriers in its use and appropriate measures are required to deal with these barriers. However, this cost-effective analysis clearly indicates that the ABI screening is a highly cost-effective clinical tool to be applied in the primary care.
In the real world scenario, compliance to the ABI screening and to the preventive treatment thereafter, in an apparently healthy population could pose a challenge. However, factors like the noninvasive nature of the ABI testing and routine primary care visits of high risk individuals are likely to contribute to good compliance. Although lower compliance to the screening programme may affect the overall cost effectiveness results, it is unlikely to negate the cost-effectiveness of ABI screening altogether because of the high probability of the screening programme to be cost-effective as shown in the cost-effectiveness plane (Figure 4).
Our results are in line with a previously published modeling study by Sigvant et al. to assess the cost-effectiveness of various therapeutic agents in asymptomatic PAD patients. Aspirin as one of the preventive therapies produced similar health outcomes in 55 year-old patients as our model.
In line with ACC/AHA guidelines, this modeling study is only based upon risk reduction by preventive anti-platelet therapy given to the PAD patients. Additional cardiovascular risk reducing treatments such as exercise therapy, lipid lowering statins and blood pressure lowering drugs are also prescribed in PAD. Further research is required to quantify the consolidated effects of diverse preventive options in a heterogenic PAD population.