Health & Medical Environmental

Health Effects of a Mixture of Indoor Air Volatile Organics

Health Effects of a Mixture of Indoor Air Volatile Organics
In our present study we tested the health effects among women of controlled exposures to volatile organic compounds (VOCs), with and without ozone (O3), and psychological stress. Each subject was exposed to the following three conditions at 1-week intervals (within-subject factor): VOCs (26 mg/m), VOCs + O3 (26 mg/m + 40 ppb), and ambient air with a 1-min spike of VOCs (2.5 mg/m). As a between-subjects factor, half the subjects were randomly assigned to perform a stressor. Subjects were 130 healthy women (mean age, 27.2 years; mean education, 15.2 years). Health effects measured before, during, and after each 140-min exposure included symptoms, neurobehavioral performance, salivary cortisol, and lung function. Mixing VOCs with O3 was shown to produce irritating compounds including aldehydes, hydrogen peroxide, organic acids, secondary organic aerosols, and ultrafine particles (particulate matter with aerodynamic diameter < 0.1 µm). Exposure to VOCs with and without O3 did not result in significant subjective or objective health effects. Psychological stress significantly increased salivary cortisol and symptoms of anxiety regardless of exposure condition. Neither lung function nor neurobehavioral performance was compromised by exposure to VOCs or VOCs + O3. Although numerous epidemiologic studies suggest that symptoms are significantly increased among workers in buildings with poor ventilation and mixtures of VOCs, our acute exposure study was not consistent with these epidemiologic findings. Stress appears to be a more significant factor than chemical exposures in affecting some of the health end points measured in our present study.

Between 800,000 and 1.2 million buildings in the United States may be associated with building-related illnesses, and thus, between 30 and 70 million workers are exposed to potentially unhealthy working conditions (Kreiss 1990; Woods 1989). Mixtures of volatile organic compounds (VOCs) and ozone (O3) are prominent pollutants in indoor environments (Fan et al. 2003). In some cases, VOCs measured in office buildings are associated with complaints of mucosal irritation and nonspecific symptoms such as headache (Hodgson et al. 1991; Ten Brinke et al. 1998). Furthermore, healthy men and women intentionally exposed to similar mixtures of VOCs report increased symptoms of eye, nose, and throat irritation and reduced air quality ratings relative to clean air conditions (Hudnell et al. 1992; Prah et al. 1998). The number of symptoms reported in controlled exposure studies, however, are relatively few and of mild intensity compared with the ongoing complaints of office workers (Apter et al. 1994; Mendell and Smith 1990; Nordstrom et al. 1994; Zweers et al. 1992). Thus, some investigators suggest that when O3 reacts with VOCs in building environments, secondary products including ultrafine particles (particulate matter with aerodynamic diameter < 0.1 µm)may mediate the more substantial effects found in offices (Bako-Biro et al. 2004; Fan et al. 2003; Rohr et al. 2002; Weschler and Shields 2000; Wolkoff and Nielsen 2001). Our study assesses a selected suite of subjective and objective markers in response to the following exposure conditions: VOCs, VOCs + O3, and ambient air with a 1-min spike of VOCs [masked clean air (MCA)]. We hypothesized that exposure to VOCs or VOCs + O3 would result in greater symptom severity, compromised neurobehavioral performance, reduced lung function, and increased salivary cortisol relative to the MCA exposure (hypothesis 1: exposure main effect).

Gender and psychological stress also contribute to health complaints in buildings (Crawford and Bolas 1996; Hodgson 1995; Mendell 1993). For example, Bachmann and Myers (1995) found gender and psychological symptoms to be significant predictors of symptoms in two problem and one nonproblem building. Temperature, uncomfortable humidity, and reported odors, however, were also associated with symptoms in the buildings investigated. Women consistently report the highest prevalence of symptoms (Skov et al. 1989; Stenberg and Wall 1995), although external psychological stress (work load and control) is also associated with complaints (Norback et al. 1990; Ryan and Morrow 1992). Therefore, we chose to include only women in our study and to expose subjects to chemical mixtures with and without psychological stress. We hypothesized that subjects would report significantly greater symptom severity and would show a greater cortisol response when exposed to VOCs or VOCs + O3 with psychological stress compared with these exposure conditions without stress or to the MCA condition with or without psychological stress (hypothesis 2: exposure × stress interaction).

In summary, indoor environmental quality is affected by numerous factors, including biological, chemical, and particulate pollutants; temperature and humidity; quality of the heating, ventilation, and air conditioning system; noise; light; and odor (Mendell and Heath 2005). Our present study assessed the interaction of chemical pollutants and psychological stress on subjective (i.e., symptoms) and objective (i.e., cortisol, lung function, neurobehavioral performance) indicators of health effects, while holding temperature, humidity, noise, and light constant. Furthermore, our study added an untested exposure dimension created by combining VOCs with O3, shown in previous studies to produce a suite of irritating gas and condensed-phase products (Fan et al. 2003).

Related posts "Health & Medical : Environmental"

Insulin Resistance and Environmental Pollutants

Environmental

Pharmaceuticals in Tap Water

Environmental

ADHD, Childhood Autism, and Prenatal Exposure to PFASs

Environmental

Myopia: The Evidence for Environmental Factors

Environmental

ADHD, Childhood Autism, and Prenatal Exposure to PFASs

Environmental

PFOA Exposure and CAD, Hypertension, and High Cholesterol

Environmental

Leave a Comment